\(\int \frac {\sinh ^4(c+d x)}{a+b \tanh ^2(c+d x)} \, dx\) [25]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 118 \[ \int \frac {\sinh ^4(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=\frac {\left (3 a^2-6 a b-b^2\right ) x}{8 (a+b)^3}+\frac {a^{3/2} \sqrt {b} \arctan \left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{(a+b)^3 d}-\frac {(5 a+b) \cosh (c+d x) \sinh (c+d x)}{8 (a+b)^2 d}+\frac {\cosh ^3(c+d x) \sinh (c+d x)}{4 (a+b) d} \]

[Out]

1/8*(3*a^2-6*a*b-b^2)*x/(a+b)^3-1/8*(5*a+b)*cosh(d*x+c)*sinh(d*x+c)/(a+b)^2/d+1/4*cosh(d*x+c)^3*sinh(d*x+c)/(a
+b)/d+a^(3/2)*arctan(b^(1/2)*tanh(d*x+c)/a^(1/2))*b^(1/2)/(a+b)^3/d

Rubi [A] (verified)

Time = 0.12 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {3744, 481, 541, 536, 212, 211} \[ \int \frac {\sinh ^4(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=\frac {a^{3/2} \sqrt {b} \arctan \left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{d (a+b)^3}+\frac {x \left (3 a^2-6 a b-b^2\right )}{8 (a+b)^3}+\frac {\sinh (c+d x) \cosh ^3(c+d x)}{4 d (a+b)}-\frac {(5 a+b) \sinh (c+d x) \cosh (c+d x)}{8 d (a+b)^2} \]

[In]

Int[Sinh[c + d*x]^4/(a + b*Tanh[c + d*x]^2),x]

[Out]

((3*a^2 - 6*a*b - b^2)*x)/(8*(a + b)^3) + (a^(3/2)*Sqrt[b]*ArcTan[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a]])/((a + b)^3
*d) - ((5*a + b)*Cosh[c + d*x]*Sinh[c + d*x])/(8*(a + b)^2*d) + (Cosh[c + d*x]^3*Sinh[c + d*x])/(4*(a + b)*d)

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 481

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-a)*e^(
2*n - 1)*(e*x)^(m - 2*n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(b*n*(b*c - a*d)*(p + 1))), x] + Dist[e^
(2*n)/(b*n*(b*c - a*d)*(p + 1)), Int[(e*x)^(m - 2*n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[a*c*(m - 2*n + 1)
+ (a*d*(m - n + n*q + 1) + b*c*n*(p + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 0]
 && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m - n + 1, n] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 536

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Dist[(b*e - a*f
)/(b*c - a*d), Int[1/(a + b*x^n), x], x] - Dist[(d*e - c*f)/(b*c - a*d), Int[1/(c + d*x^n), x], x] /; FreeQ[{a
, b, c, d, e, f, n}, x]

Rule 541

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Simp[(
-(b*e - a*f))*x*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*n*(b*c - a*d)*(p + 1))), x] + Dist[1/(a*n*(b*c - a
*d)*(p + 1)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(b*e - a*f) + e*n*(b*c - a*d)*(p + 1) + d*(b*e - a*
f)*(n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, q}, x] && LtQ[p, -1]

Rule 3744

Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[
{ff = FreeFactors[Tan[e + f*x], x]}, Dist[c*(ff^(m + 1)/f), Subst[Int[x^m*((a + b*(ff*x)^n)^p/(c^2 + ff^2*x^2)
^(m/2 + 1)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[m/2]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {x^4}{\left (1-x^2\right )^3 \left (a+b x^2\right )} \, dx,x,\tanh (c+d x)\right )}{d} \\ & = \frac {\cosh ^3(c+d x) \sinh (c+d x)}{4 (a+b) d}-\frac {\text {Subst}\left (\int \frac {a+(4 a+b) x^2}{\left (1-x^2\right )^2 \left (a+b x^2\right )} \, dx,x,\tanh (c+d x)\right )}{4 (a+b) d} \\ & = -\frac {(5 a+b) \cosh (c+d x) \sinh (c+d x)}{8 (a+b)^2 d}+\frac {\cosh ^3(c+d x) \sinh (c+d x)}{4 (a+b) d}-\frac {\text {Subst}\left (\int \frac {-a (3 a-b)+b (5 a+b) x^2}{\left (1-x^2\right ) \left (a+b x^2\right )} \, dx,x,\tanh (c+d x)\right )}{8 (a+b)^2 d} \\ & = -\frac {(5 a+b) \cosh (c+d x) \sinh (c+d x)}{8 (a+b)^2 d}+\frac {\cosh ^3(c+d x) \sinh (c+d x)}{4 (a+b) d}+\frac {\left (a^2 b\right ) \text {Subst}\left (\int \frac {1}{a+b x^2} \, dx,x,\tanh (c+d x)\right )}{(a+b)^3 d}+\frac {\left (3 a^2-6 a b-b^2\right ) \text {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\tanh (c+d x)\right )}{8 (a+b)^3 d} \\ & = \frac {\left (3 a^2-6 a b-b^2\right ) x}{8 (a+b)^3}+\frac {a^{3/2} \sqrt {b} \arctan \left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{(a+b)^3 d}-\frac {(5 a+b) \cosh (c+d x) \sinh (c+d x)}{8 (a+b)^2 d}+\frac {\cosh ^3(c+d x) \sinh (c+d x)}{4 (a+b) d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.89 (sec) , antiderivative size = 93, normalized size of antiderivative = 0.79 \[ \int \frac {\sinh ^4(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=\frac {4 \left (3 a^2-6 a b-b^2\right ) (c+d x)+32 a^{3/2} \sqrt {b} \arctan \left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )-8 a (a+b) \sinh (2 (c+d x))+(a+b)^2 \sinh (4 (c+d x))}{32 (a+b)^3 d} \]

[In]

Integrate[Sinh[c + d*x]^4/(a + b*Tanh[c + d*x]^2),x]

[Out]

(4*(3*a^2 - 6*a*b - b^2)*(c + d*x) + 32*a^(3/2)*Sqrt[b]*ArcTan[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a]] - 8*a*(a + b)*
Sinh[2*(c + d*x)] + (a + b)^2*Sinh[4*(c + d*x)])/(32*(a + b)^3*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(214\) vs. \(2(104)=208\).

Time = 11.14 (sec) , antiderivative size = 215, normalized size of antiderivative = 1.82

method result size
risch \(\frac {3 a^{2} x}{8 \left (a +b \right )^{3}}-\frac {3 a x b}{4 \left (a +b \right )^{3}}-\frac {x \,b^{2}}{8 \left (a +b \right )^{3}}+\frac {{\mathrm e}^{4 d x +4 c}}{64 d \left (a +b \right )}-\frac {a \,{\mathrm e}^{2 d x +2 c}}{8 \left (a +b \right )^{2} d}+\frac {a \,{\mathrm e}^{-2 d x -2 c}}{8 \left (a^{2}+2 a b +b^{2}\right ) d}-\frac {{\mathrm e}^{-4 d x -4 c}}{64 d \left (a +b \right )}+\frac {\sqrt {-a b}\, a \ln \left ({\mathrm e}^{2 d x +2 c}+\frac {2 \sqrt {-a b}+a -b}{a +b}\right )}{2 \left (a +b \right )^{3} d}-\frac {\sqrt {-a b}\, a \ln \left ({\mathrm e}^{2 d x +2 c}-\frac {2 \sqrt {-a b}-a +b}{a +b}\right )}{2 \left (a +b \right )^{3} d}\) \(215\)
derivativedivides \(\frac {\frac {8}{\left (32 a +32 b \right ) \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{4}}+\frac {32}{\left (64 a +64 b \right ) \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3}}-\frac {a -3 b}{8 \left (a +b \right )^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}-\frac {3 a -b}{8 \left (a +b \right )^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {\left (-3 a^{2}+6 a b +b^{2}\right ) \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{8 \left (a +b \right )^{3}}-\frac {8}{\left (32 a +32 b \right ) \left (1+\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{4}}+\frac {32}{\left (64 a +64 b \right ) \left (1+\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3}}-\frac {-a +3 b}{8 \left (a +b \right )^{2} \left (1+\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2}}-\frac {3 a -b}{8 \left (a +b \right )^{2} \left (1+\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+\frac {\left (3 a^{2}-6 a b -b^{2}\right ) \ln \left (1+\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 \left (a +b \right )^{3}}-\frac {2 a^{3} b \left (\frac {\left (a +\sqrt {\left (a +b \right ) b}+b \right ) \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}-\frac {\left (-a +\sqrt {\left (a +b \right ) b}-b \right ) \operatorname {arctanh}\left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}\right )}{\left (a +b \right )^{3}}}{d}\) \(434\)
default \(\frac {\frac {8}{\left (32 a +32 b \right ) \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{4}}+\frac {32}{\left (64 a +64 b \right ) \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3}}-\frac {a -3 b}{8 \left (a +b \right )^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}-\frac {3 a -b}{8 \left (a +b \right )^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {\left (-3 a^{2}+6 a b +b^{2}\right ) \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{8 \left (a +b \right )^{3}}-\frac {8}{\left (32 a +32 b \right ) \left (1+\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{4}}+\frac {32}{\left (64 a +64 b \right ) \left (1+\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3}}-\frac {-a +3 b}{8 \left (a +b \right )^{2} \left (1+\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2}}-\frac {3 a -b}{8 \left (a +b \right )^{2} \left (1+\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+\frac {\left (3 a^{2}-6 a b -b^{2}\right ) \ln \left (1+\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 \left (a +b \right )^{3}}-\frac {2 a^{3} b \left (\frac {\left (a +\sqrt {\left (a +b \right ) b}+b \right ) \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}-\frac {\left (-a +\sqrt {\left (a +b \right ) b}-b \right ) \operatorname {arctanh}\left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}\right )}{\left (a +b \right )^{3}}}{d}\) \(434\)

[In]

int(sinh(d*x+c)^4/(a+b*tanh(d*x+c)^2),x,method=_RETURNVERBOSE)

[Out]

3/8*a^2*x/(a+b)^3-3/4*a*x/(a+b)^3*b-1/8*x/(a+b)^3*b^2+1/64/d/(a+b)*exp(4*d*x+4*c)-1/8*a/(a+b)^2/d*exp(2*d*x+2*
c)+1/8*a/(a^2+2*a*b+b^2)/d*exp(-2*d*x-2*c)-1/64/d/(a+b)*exp(-4*d*x-4*c)+1/2*(-a*b)^(1/2)*a/(a+b)^3/d*ln(exp(2*
d*x+2*c)+(2*(-a*b)^(1/2)+a-b)/(a+b))-1/2*(-a*b)^(1/2)*a/(a+b)^3/d*ln(exp(2*d*x+2*c)-(2*(-a*b)^(1/2)-a+b)/(a+b)
)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 860 vs. \(2 (104) = 208\).

Time = 0.30 (sec) , antiderivative size = 2024, normalized size of antiderivative = 17.15 \[ \int \frac {\sinh ^4(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=\text {Too large to display} \]

[In]

integrate(sinh(d*x+c)^4/(a+b*tanh(d*x+c)^2),x, algorithm="fricas")

[Out]

[1/64*((a^2 + 2*a*b + b^2)*cosh(d*x + c)^8 + 8*(a^2 + 2*a*b + b^2)*cosh(d*x + c)*sinh(d*x + c)^7 + (a^2 + 2*a*
b + b^2)*sinh(d*x + c)^8 + 8*(3*a^2 - 6*a*b - b^2)*d*x*cosh(d*x + c)^4 - 8*(a^2 + a*b)*cosh(d*x + c)^6 + 4*(7*
(a^2 + 2*a*b + b^2)*cosh(d*x + c)^2 - 2*a^2 - 2*a*b)*sinh(d*x + c)^6 + 8*(7*(a^2 + 2*a*b + b^2)*cosh(d*x + c)^
3 - 6*(a^2 + a*b)*cosh(d*x + c))*sinh(d*x + c)^5 + 2*(35*(a^2 + 2*a*b + b^2)*cosh(d*x + c)^4 + 4*(3*a^2 - 6*a*
b - b^2)*d*x - 60*(a^2 + a*b)*cosh(d*x + c)^2)*sinh(d*x + c)^4 + 8*(7*(a^2 + 2*a*b + b^2)*cosh(d*x + c)^5 + 4*
(3*a^2 - 6*a*b - b^2)*d*x*cosh(d*x + c) - 20*(a^2 + a*b)*cosh(d*x + c)^3)*sinh(d*x + c)^3 + 8*(a^2 + a*b)*cosh
(d*x + c)^2 + 4*(7*(a^2 + 2*a*b + b^2)*cosh(d*x + c)^6 + 12*(3*a^2 - 6*a*b - b^2)*d*x*cosh(d*x + c)^2 - 30*(a^
2 + a*b)*cosh(d*x + c)^4 + 2*a^2 + 2*a*b)*sinh(d*x + c)^2 + 32*(a*cosh(d*x + c)^4 + 4*a*cosh(d*x + c)^3*sinh(d
*x + c) + 6*a*cosh(d*x + c)^2*sinh(d*x + c)^2 + 4*a*cosh(d*x + c)*sinh(d*x + c)^3 + a*sinh(d*x + c)^4)*sqrt(-a
*b)*log(((a^2 + 2*a*b + b^2)*cosh(d*x + c)^4 + 4*(a^2 + 2*a*b + b^2)*cosh(d*x + c)*sinh(d*x + c)^3 + (a^2 + 2*
a*b + b^2)*sinh(d*x + c)^4 + 2*(a^2 - b^2)*cosh(d*x + c)^2 + 2*(3*(a^2 + 2*a*b + b^2)*cosh(d*x + c)^2 + a^2 -
b^2)*sinh(d*x + c)^2 + a^2 - 6*a*b + b^2 + 4*((a^2 + 2*a*b + b^2)*cosh(d*x + c)^3 + (a^2 - b^2)*cosh(d*x + c))
*sinh(d*x + c) + 4*((a + b)*cosh(d*x + c)^2 + 2*(a + b)*cosh(d*x + c)*sinh(d*x + c) + (a + b)*sinh(d*x + c)^2
+ a - b)*sqrt(-a*b))/((a + b)*cosh(d*x + c)^4 + 4*(a + b)*cosh(d*x + c)*sinh(d*x + c)^3 + (a + b)*sinh(d*x + c
)^4 + 2*(a - b)*cosh(d*x + c)^2 + 2*(3*(a + b)*cosh(d*x + c)^2 + a - b)*sinh(d*x + c)^2 + 4*((a + b)*cosh(d*x
+ c)^3 + (a - b)*cosh(d*x + c))*sinh(d*x + c) + a + b)) - a^2 - 2*a*b - b^2 + 8*((a^2 + 2*a*b + b^2)*cosh(d*x
+ c)^7 + 4*(3*a^2 - 6*a*b - b^2)*d*x*cosh(d*x + c)^3 - 6*(a^2 + a*b)*cosh(d*x + c)^5 + 2*(a^2 + a*b)*cosh(d*x
+ c))*sinh(d*x + c))/((a^3 + 3*a^2*b + 3*a*b^2 + b^3)*d*cosh(d*x + c)^4 + 4*(a^3 + 3*a^2*b + 3*a*b^2 + b^3)*d*
cosh(d*x + c)^3*sinh(d*x + c) + 6*(a^3 + 3*a^2*b + 3*a*b^2 + b^3)*d*cosh(d*x + c)^2*sinh(d*x + c)^2 + 4*(a^3 +
 3*a^2*b + 3*a*b^2 + b^3)*d*cosh(d*x + c)*sinh(d*x + c)^3 + (a^3 + 3*a^2*b + 3*a*b^2 + b^3)*d*sinh(d*x + c)^4)
, 1/64*((a^2 + 2*a*b + b^2)*cosh(d*x + c)^8 + 8*(a^2 + 2*a*b + b^2)*cosh(d*x + c)*sinh(d*x + c)^7 + (a^2 + 2*a
*b + b^2)*sinh(d*x + c)^8 + 8*(3*a^2 - 6*a*b - b^2)*d*x*cosh(d*x + c)^4 - 8*(a^2 + a*b)*cosh(d*x + c)^6 + 4*(7
*(a^2 + 2*a*b + b^2)*cosh(d*x + c)^2 - 2*a^2 - 2*a*b)*sinh(d*x + c)^6 + 8*(7*(a^2 + 2*a*b + b^2)*cosh(d*x + c)
^3 - 6*(a^2 + a*b)*cosh(d*x + c))*sinh(d*x + c)^5 + 2*(35*(a^2 + 2*a*b + b^2)*cosh(d*x + c)^4 + 4*(3*a^2 - 6*a
*b - b^2)*d*x - 60*(a^2 + a*b)*cosh(d*x + c)^2)*sinh(d*x + c)^4 + 8*(7*(a^2 + 2*a*b + b^2)*cosh(d*x + c)^5 + 4
*(3*a^2 - 6*a*b - b^2)*d*x*cosh(d*x + c) - 20*(a^2 + a*b)*cosh(d*x + c)^3)*sinh(d*x + c)^3 + 8*(a^2 + a*b)*cos
h(d*x + c)^2 + 4*(7*(a^2 + 2*a*b + b^2)*cosh(d*x + c)^6 + 12*(3*a^2 - 6*a*b - b^2)*d*x*cosh(d*x + c)^2 - 30*(a
^2 + a*b)*cosh(d*x + c)^4 + 2*a^2 + 2*a*b)*sinh(d*x + c)^2 + 64*(a*cosh(d*x + c)^4 + 4*a*cosh(d*x + c)^3*sinh(
d*x + c) + 6*a*cosh(d*x + c)^2*sinh(d*x + c)^2 + 4*a*cosh(d*x + c)*sinh(d*x + c)^3 + a*sinh(d*x + c)^4)*sqrt(a
*b)*arctan(1/2*((a + b)*cosh(d*x + c)^2 + 2*(a + b)*cosh(d*x + c)*sinh(d*x + c) + (a + b)*sinh(d*x + c)^2 + a
- b)*sqrt(a*b)/(a*b)) - a^2 - 2*a*b - b^2 + 8*((a^2 + 2*a*b + b^2)*cosh(d*x + c)^7 + 4*(3*a^2 - 6*a*b - b^2)*d
*x*cosh(d*x + c)^3 - 6*(a^2 + a*b)*cosh(d*x + c)^5 + 2*(a^2 + a*b)*cosh(d*x + c))*sinh(d*x + c))/((a^3 + 3*a^2
*b + 3*a*b^2 + b^3)*d*cosh(d*x + c)^4 + 4*(a^3 + 3*a^2*b + 3*a*b^2 + b^3)*d*cosh(d*x + c)^3*sinh(d*x + c) + 6*
(a^3 + 3*a^2*b + 3*a*b^2 + b^3)*d*cosh(d*x + c)^2*sinh(d*x + c)^2 + 4*(a^3 + 3*a^2*b + 3*a*b^2 + b^3)*d*cosh(d
*x + c)*sinh(d*x + c)^3 + (a^3 + 3*a^2*b + 3*a*b^2 + b^3)*d*sinh(d*x + c)^4)]

Sympy [F]

\[ \int \frac {\sinh ^4(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=\int \frac {\sinh ^{4}{\left (c + d x \right )}}{a + b \tanh ^{2}{\left (c + d x \right )}}\, dx \]

[In]

integrate(sinh(d*x+c)**4/(a+b*tanh(d*x+c)**2),x)

[Out]

Integral(sinh(c + d*x)**4/(a + b*tanh(c + d*x)**2), x)

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 514 vs. \(2 (104) = 208\).

Time = 0.34 (sec) , antiderivative size = 514, normalized size of antiderivative = 4.36 \[ \int \frac {\sinh ^4(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=-\frac {{\left (a b - b^{2}\right )} {\left (d x + c\right )}}{2 \, {\left (a^{3} + 3 \, a^{2} b + 3 \, a b^{2} + b^{3}\right )} d} + \frac {{\left (8 \, b e^{\left (-2 \, d x - 2 \, c\right )} + a + b\right )} e^{\left (4 \, d x + 4 \, c\right )}}{64 \, {\left (a^{2} + 2 \, a b + b^{2}\right )} d} - \frac {b \log \left ({\left (a + b\right )} e^{\left (4 \, d x + 4 \, c\right )} + 2 \, {\left (a - b\right )} e^{\left (2 \, d x + 2 \, c\right )} + a + b\right )}{4 \, {\left (a^{2} + 2 \, a b + b^{2}\right )} d} + \frac {b \log \left (2 \, {\left (a - b\right )} e^{\left (-2 \, d x - 2 \, c\right )} + {\left (a + b\right )} e^{\left (-4 \, d x - 4 \, c\right )} + a + b\right )}{4 \, {\left (a^{2} + 2 \, a b + b^{2}\right )} d} + \frac {{\left (a b - b^{2}\right )} \arctan \left (\frac {{\left (a + b\right )} e^{\left (2 \, d x + 2 \, c\right )} + a - b}{2 \, \sqrt {a b}}\right )}{4 \, {\left (a^{2} + 2 \, a b + b^{2}\right )} \sqrt {a b} d} - \frac {{\left (a^{2} b - 6 \, a b^{2} + b^{3}\right )} \arctan \left (\frac {{\left (a + b\right )} e^{\left (-2 \, d x - 2 \, c\right )} + a - b}{2 \, \sqrt {a b}}\right )}{8 \, {\left (a^{3} + 3 \, a^{2} b + 3 \, a b^{2} + b^{3}\right )} \sqrt {a b} d} - \frac {{\left (a b - b^{2}\right )} \arctan \left (\frac {{\left (a + b\right )} e^{\left (-2 \, d x - 2 \, c\right )} + a - b}{2 \, \sqrt {a b}}\right )}{4 \, {\left (a^{2} + 2 \, a b + b^{2}\right )} \sqrt {a b} d} - \frac {3 \, b \arctan \left (\frac {{\left (a + b\right )} e^{\left (-2 \, d x - 2 \, c\right )} + a - b}{2 \, \sqrt {a b}}\right )}{8 \, \sqrt {a b} {\left (a + b\right )} d} - \frac {8 \, b e^{\left (-2 \, d x - 2 \, c\right )} + {\left (a + b\right )} e^{\left (-4 \, d x - 4 \, c\right )}}{64 \, {\left (a^{2} + 2 \, a b + b^{2}\right )} d} + \frac {3 \, {\left (d x + c\right )}}{8 \, {\left (a + b\right )} d} - \frac {e^{\left (2 \, d x + 2 \, c\right )}}{8 \, {\left (a + b\right )} d} + \frac {e^{\left (-2 \, d x - 2 \, c\right )}}{8 \, {\left (a + b\right )} d} \]

[In]

integrate(sinh(d*x+c)^4/(a+b*tanh(d*x+c)^2),x, algorithm="maxima")

[Out]

-1/2*(a*b - b^2)*(d*x + c)/((a^3 + 3*a^2*b + 3*a*b^2 + b^3)*d) + 1/64*(8*b*e^(-2*d*x - 2*c) + a + b)*e^(4*d*x
+ 4*c)/((a^2 + 2*a*b + b^2)*d) - 1/4*b*log((a + b)*e^(4*d*x + 4*c) + 2*(a - b)*e^(2*d*x + 2*c) + a + b)/((a^2
+ 2*a*b + b^2)*d) + 1/4*b*log(2*(a - b)*e^(-2*d*x - 2*c) + (a + b)*e^(-4*d*x - 4*c) + a + b)/((a^2 + 2*a*b + b
^2)*d) + 1/4*(a*b - b^2)*arctan(1/2*((a + b)*e^(2*d*x + 2*c) + a - b)/sqrt(a*b))/((a^2 + 2*a*b + b^2)*sqrt(a*b
)*d) - 1/8*(a^2*b - 6*a*b^2 + b^3)*arctan(1/2*((a + b)*e^(-2*d*x - 2*c) + a - b)/sqrt(a*b))/((a^3 + 3*a^2*b +
3*a*b^2 + b^3)*sqrt(a*b)*d) - 1/4*(a*b - b^2)*arctan(1/2*((a + b)*e^(-2*d*x - 2*c) + a - b)/sqrt(a*b))/((a^2 +
 2*a*b + b^2)*sqrt(a*b)*d) - 3/8*b*arctan(1/2*((a + b)*e^(-2*d*x - 2*c) + a - b)/sqrt(a*b))/(sqrt(a*b)*(a + b)
*d) - 1/64*(8*b*e^(-2*d*x - 2*c) + (a + b)*e^(-4*d*x - 4*c))/((a^2 + 2*a*b + b^2)*d) + 3/8*(d*x + c)/((a + b)*
d) - 1/8*e^(2*d*x + 2*c)/((a + b)*d) + 1/8*e^(-2*d*x - 2*c)/((a + b)*d)

Giac [F]

\[ \int \frac {\sinh ^4(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=\int { \frac {\sinh \left (d x + c\right )^{4}}{b \tanh \left (d x + c\right )^{2} + a} \,d x } \]

[In]

integrate(sinh(d*x+c)^4/(a+b*tanh(d*x+c)^2),x, algorithm="giac")

[Out]

sage0*x

Mupad [B] (verification not implemented)

Time = 2.32 (sec) , antiderivative size = 250, normalized size of antiderivative = 2.12 \[ \int \frac {\sinh ^4(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=\frac {{\mathrm {e}}^{4\,c+4\,d\,x}}{64\,d\,\left (a+b\right )}-\frac {{\mathrm {e}}^{-4\,c-4\,d\,x}}{64\,d\,\left (a+b\right )}-\frac {x\,\left (-3\,a^2+6\,a\,b+b^2\right )}{8\,{\left (a+b\right )}^3}+\frac {a\,{\mathrm {e}}^{-2\,c-2\,d\,x}}{8\,d\,{\left (a+b\right )}^2}-\frac {a\,{\mathrm {e}}^{2\,c+2\,d\,x}}{8\,d\,{\left (a+b\right )}^2}+\frac {{\left (-a\right )}^{3/2}\,\sqrt {b}\,\ln \left ({\left (-a\right )}^{3/2}\,b^{3/2}\,\left ({\mathrm {e}}^{2\,c+2\,d\,x}-1\right )-2\,a^2\,b\,{\mathrm {e}}^{2\,c+2\,d\,x}+{\left (-a\right )}^{5/2}\,\sqrt {b}\,\left ({\mathrm {e}}^{2\,c+2\,d\,x}+1\right )\right )}{2\,d\,{\left (a+b\right )}^3}-\frac {{\left (-a\right )}^{3/2}\,\sqrt {b}\,\ln \left (2\,a^2\,b\,{\mathrm {e}}^{2\,c+2\,d\,x}+{\left (-a\right )}^{3/2}\,b^{3/2}\,\left ({\mathrm {e}}^{2\,c+2\,d\,x}-1\right )+{\left (-a\right )}^{5/2}\,\sqrt {b}\,\left ({\mathrm {e}}^{2\,c+2\,d\,x}+1\right )\right )}{2\,d\,{\left (a+b\right )}^3} \]

[In]

int(sinh(c + d*x)^4/(a + b*tanh(c + d*x)^2),x)

[Out]

exp(4*c + 4*d*x)/(64*d*(a + b)) - exp(- 4*c - 4*d*x)/(64*d*(a + b)) - (x*(6*a*b - 3*a^2 + b^2))/(8*(a + b)^3)
+ (a*exp(- 2*c - 2*d*x))/(8*d*(a + b)^2) - (a*exp(2*c + 2*d*x))/(8*d*(a + b)^2) + ((-a)^(3/2)*b^(1/2)*log((-a)
^(3/2)*b^(3/2)*(exp(2*c + 2*d*x) - 1) - 2*a^2*b*exp(2*c + 2*d*x) + (-a)^(5/2)*b^(1/2)*(exp(2*c + 2*d*x) + 1)))
/(2*d*(a + b)^3) - ((-a)^(3/2)*b^(1/2)*log(2*a^2*b*exp(2*c + 2*d*x) + (-a)^(3/2)*b^(3/2)*(exp(2*c + 2*d*x) - 1
) + (-a)^(5/2)*b^(1/2)*(exp(2*c + 2*d*x) + 1)))/(2*d*(a + b)^3)